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Why Commonsense Knowledge?
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Commonsense problems in NLP

NLU: Multi-choice QA (w/o context)

Where do adults usually use glue sticks?

A: classroom  B: office C: desk drawer

NLG: Constrained Sentence Generation (w/ a set of keywords)

Generate a daily-life scene about a concept-set: {apple, bag, tree}

A boy picks some apples from a tree and puts them into a bag.



Commonsense Reasoning (CSR)?

 Definition of Common Sense: the basic level of practical
knowledge and reasoning
» Physical objects, properties, laws
« Human behaviors / social conventions
« Temporal commonsense

* The human-like ability to understand and generate
everyday scenarios (situations, events)

« The computation process of manipulating commonsense
knowledge to make compositional logical inference.



This Talk

 Part I: Discriminative Commonsense Reasoning
* Improving language understanding with commonsense
* Models: KagNet and multi-hop relational network

 Part II: Generative Commonsense Reasoning
* Imposing commonsense to text generation
* A new task & dataset: CommonGen
* Methods and Evaluation
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Commonsense Question Answering

Where do adults usually use glue sticks?

A: classroom  B: office C: desk drawer

What do you need to fill with ink to write notes on an A4 paper?

A: fountain pen  B: printer C: pencil

Can you choose the most plausible answer based
on daily life commonsense knowledge?

KagNet: Knowledge-Aware Graph

Networks 0

(Bi” Yuchen Lin et al. 20]9)



Commonsense Question Answering

Where do adults usually use glue sticks?

A: classroom  B: office C: desk drawer

What do you need to fill with ink to write notes on an A4 paper?

A: fountain pen  B: printer C: pencil

From the CommonsenseQA dataset (Talmor et al. NAACL 2019)

Research question:

How can we impose commonsense in NLU models?

KagNet: Knowledge-Aware Graph

Networks !

(Bi“ Yuchen Lin et al. 20]9)



Knowledge-Aware Reasoning

Symbol Space

Semantic Space

(Bi“ Yuchen Lin et al. 20]9)
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Challenges in knowledge-aware reasoning

* How can we find the schema graphs?
* Noisy and Incomplete

* Numerous graphs; how to select the most related ones

* How do we encode these graphs for reasoning?
* Complex multi-relational graph structures
* NO supervision in aligning graphs and question-answer pairs

* Need to be compatible with neural sentence encoders

KagNet: Knowledge-Aware Graph

Networks E

(Bi“ Yuchen Lin et al. 20]9)



Proposed Framework Overview
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(1) Schema Graph Construction

Tokenization / Lemmatization

Match ConceptNet vocabulary

Merge multiple smaller concepts into a longer one

* eg. " fountain”, “'pen” --> “‘fountain pen”

Question Concepts (, and

Find paths between each QA-concept pair (one from (, and one from

. denotes the set of paths between i-th question concept and

Do g

Path pruning by length (<= 5 nodes) and embedding-based metric.

)



(2) Path-based Relational Graph
Encoder
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(3) w/ Hierarchical Path-based
Attention

* Two average poo]ing:
> Rij; Tigl

* Assuming all QA-concept pairs are equally important g=

Cql X |Cal
. 1
* Assuming all paths are equally relevant ri;= wzk:LSTM(Pi‘j[k])
* Modeling the two-level importance as latent weights:
Qi 5. k) = Ti,j W, LSTM(Pq;’j [k]), ﬂ(i,j) =s W Ti,j
&(i,j,-) — SoftMax(a(i,j,.)), ,3(.,.) = SOftMax(ﬂ(.’.))
Ri,j = Z&(i’j’k) . LSTM(PZ'J' [k)]) g = Z ﬂ(z’,j)[Ri,j ) Tz‘,j]
k i,J
Path-Level Attention ConceptPair-Level Attention
(attending on semantic space) (attending on statement)

KagNet: Knowledge-Aware Graph

(Bill Yuchen Lin et al. 2019) Networks
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-xperiments

Recent follow-up submissions:
Based on XL-NET / RoBERTa (72.1)

Using large-scale wiki docs via IR

BIDAF++ I
Transfer from other QA datasets (e.g. RACE)
QACOMPARE+GLOVE [ 257

QABILINEAR+GLOVE [ 315
ESIM+ELMO I 328

ESIM+GLOVE I 34

GPT-Finetuning [N 455
BERT (base) + FineTuning [N 5
BERT (large) + FineTuning [, s6.7
KagNet (ours, w/ BERT-L) I, ss.0

Human Performance | s8.9

20 40 60 80

Random guess 20

Adversarial Data Augmentation

More Performance on Official Test Set: https://www.tau-nlp.org/csqa-leaderboard

KagNet: Knowledge-Aware Graph

Networks 18

(Bi“ Yuchen Lin et al. 20]9)


https://www.tau-nlp.org/csqa-leaderboard

(Bi” Yuchen Lin et al. 20]9)

Interpretability

What do you £i11 with ink to write on an A4 paper?

A: fountain pen v (KagNet); B: printer

KagNet: Knowledge-Aware Graph
Networks

Transferability

KagNet BERT-Large

| Training! |

CSQA

59.01% vs 56.53% a

No Trammg'

SWAG WSC

53.51% vs 51.23%
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Conclusion

* A novel framework for knowledge-aware commonsense QA

* A graph neural network for relational reasoning.
* GCN + Path-based LSTM + Hierarchical Attention
* Promising for other reasoning tasks over graphs (e.g. GQA)

* Future directions in commonsense reasoning:

* Towards Learnable Graph Construction (instead of heuristic algs.)

* Explicitly deal with negations (“not”, “but”, etc.) and comparisons
(“largest”, “most”, etc.).

* Logical forms, executable semantic parsing.

* Interactively reasoning over a sequence of questions

* Our code is at https://github.com/INK-USC/KagNet

KagNet: Knowledge-Aware Graph

Networks &

(Bill Yuchen Lin et al. 2019)
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Motivation

* KG-Augmented Commonsense QA:

Leverage KG to provide knowledge which is not stated
explicitly in the context.

1. Extract the paths/subgraph localized at the entities
mentioned in the context from KG.

2. Encode the paths/subgraph.

* Previous works on encoding paths/sub-graph
o Path-based Modeling
1. Model the relational paths with sequence model.

2. Use attention to aggregate the paths. Where d“”@""e'yﬁatam?

A.

In’rer_pre’rable, but not scalable. B. Furr\iture store
o Relational Graph NN B Offl buiiing
Model the subgraph with message passing. E. Library

Scalable, but lack transparency

Key idea: Modeling All Paths Directly in Graph Networks!



Reasoning Pipeline

1. Text Encoder: Understand the

textual input (question + answer choice).

2. Graph Encoder: Reason over the
contextual subgraphs.

3. Classifier: Integrate the output from
text/graph encoder to give a plausibility
score.

/O \of

Graph Extraction
From KG

a

t"}_s,

Graph A
Encoder

L

Text
Encoder

-0

Plausibility
Score



Our Method for Encoding KG

Goal: To combine both interpretability
(path-based modeling) and scalability
(GNN).

How: Endow GNN with the capability to
model paths directly.

1. Multi-Hop Message Passing
* We extend message passing in GNN
to k-hop paths modeling.

2. Structured Relational Attention
* Incoming message for a node is
aggregated by attention mechanism.
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e.g. BERT



Results

Methods Dev (%) Test (%)
Methods Single Ensemble T5-3B" (Raffel et al., 2019) - 83.20
ROBERTa" 71 7.5 UnifiedQA " (Khashabi et al., 2020) . 87.20
.‘.
RoBERTa + KEPGN 72.5 74.4 RoBERTa-Large (w/o KG) 66.76 (+1.14) 64.80 (+2.37)
RoBERTa + KE 73.3 - + RGCN 64.65 (£1.96) 62.45 (£1.57)
RoBERTa + HyKAS 2.0' (Ma et al., 2019)  73.2 s + GeonAttn 66.85 (£1.82) 64.75 (£1.48)
RoBERTa + FreeLB' (Zhu et al., 2020) 72.2 73.1 + RN (1-hop) 64.85 (+£1.11) 63.65 (£2.31)
XLNet + DREAM' 66.9 733 + RN (2-hop) 67.00 (£0.71) 65.20 (£1.18)
XLNet + GR" (Lv et al., 2019) 75.3 . + MHGRN (A" = 3) 68.10 (£1.02) 66.85 (+1.19)
ALBERT' (Lan et al., 2019) a 76.5 AristoRoBERTaV7' 792 778
RoBERTa + MHGRN (K = 2) 75.4 76.5 + MHGRN (K = 3) 78.6 80.6
CommonsenseQA’s Leaderboard OpenBookQA’s Leaderboard

Code: https://github.com/INK-USC/MHGRN



https://github/
https://github.com/INK-USC/MHGRN
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Results
Scalability

Model Time Space

G is a dense graph

K-hop KagNet O (711,1\'77,[\-4rl K) O (7”‘1\‘"1\"1\1]{)
K-layer RGCN @ (7'11‘722[{ ) O (mnK)
MHGRN O (m*n’K) O (mnK)

g is a sparse graph with maximum node degree A << n

K-hop KagNet O ('In.K'n.[\'AK) O (mK'n,I\’AK)
K-layer RGCN O (mnKA) O (mnK)
MHGRN @, (771272KA) O (mnK)

2.0
—&— RGCN
1.5 MHGRN
o o
o
o 1.0
@ //
0.5
0'02 4 6 8

K: # Reasoning Hops



Results

Interpretability
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PPart II

CommonGen:
A Constrained Text Generation Challenge
for Generative Commonsense Reasoning

https://inklab.usc.edu/CommonGen/
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https://inklab.usc.edu/CommonGen/

What is CommonGen?

- Most current tasks for
machine commonsense focus
on discriminative reasoning.

- CommonsenseQA, SWAG.

- Humans not only use
commonsense knowledge for
understanding text, but also
for generating sentences.

Concept-Set: a collection of objects/actions.

dog, frisbee, catch, throw

Generative Commonsense Reasoning

Expected Output: everyday scenarios covering all given concepts.

- A dog leaps to catch a thrown frisbee. [Humans]
- The dog catches the frisbee when the boy throws it. 1
- A man throws away his dog ‘s favorite frisbee expecting him

: to catch it in the air. 3

Input:
-A set of common concepts (actions &
objects)

Output:
-A sentence that describes an everyday
scenario the given concepts.



Construction

dev/test train
Human |=v¢ -
References

Actively .S.
Monitored L )
Crowd-sourcing § e o

\ J
|
E diversity-based

Multiple Caption Corpora

- —

—_ —

s

I(«
sampling i g9 ,e:
YV @+ @ o

(Concept-Set, Sents) Concept-Sets

Statistics | Train Dev Test
# Concept-Sets 32,651 993 1,497
-Size =3 25,020 493 -
-Size =4 4,240 250 747
-Size=5 3,391 250 750
# Sentences 67,389 4,018 6,042
per Concept-Set 2.06 4.04 4.04
Average Length 10.54 11:55 13.34
# Unique Concepts 4,697 766 1,248
# Unique Concept-Pairs 59,125 3,926 8,777
# Unique Concept-Triples 50,713 3,766 9,920
% Unseen Concepts - 6.53% 8.97%
% Unseen Concept-Pairs - 96.31% 100.00%
% Unseen Concept-Triples - 99.60% 100.00%
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Why is it hard?

Two key Challenges of

CommonGer

(1) Relational knowledge are latent and compositional.

{ exercise, rope, wall, tie, wave } — 3

- Underlying Relational Commonsense Knowledge

(exercise, HasSubEvent , releasing energy)
(rope, UsedFor, tying something)
(releasing energy, HasPrerequisite, motion)
(wave, IsA, motion) ; (rope, UsedFor, waving)
_ The motion costs more energy if ropes are fied to a wall.

‘ Relational Reasoning for Generation

A woman in a gym exercises by waving ropes tied to a wall.

Category Relations 1-hop | 2-hop
Spatial . . 0
knowledge AtLocation, LocatedNear | 9.40% | 39.31%

: UsedFor,CapableOf,Part0f,
0bj eit ReceivesAction,MadeOf, 9.60% | 44.04%
PTOpErtl1es FormOf, HasProperty,HasA
Human CausesDesire,MotivatedBy,
behaviors |Desires,NotDesires,Manner 4.60% | 19.59%
Temporal Subevent, Prerequisite,
knowledge First/Last-Subevent L56% | 26:08%
RelatedTo, Synonym,
General DistinctFrom, IsA, 74.89% | 69.65%

HasContext,SimilarTo




Why is it hard?
Two key Challenges of
CommonGer

(2) Compositional Generalization for unseen concept compounds.

vxl = { apple, bag, put } Training | Statistics | Train Dev Test
y1 = a girl puts an apple in her bag # Concept-Sets 32,651 993 1,497
: -Size =3 25,020 493 -
xz = { apple, tree, pick } | Size =4 4240 250 747
y, = a man picks some apples from a free -Size =5 3,391 250 750
x3 = { apple, basket, wash } # Sentences 67,389 4,018 6,042
_ &l per Concept-Set 2.06 4.04 4.04
y3= a boy takes an apple from a basket and washes it. | Average Length 10.54 11.55 13.34
:' T . ‘ Compositional Generalization # Unique Concepts 4,697 766 1248
i ' s | # Unique Concept-Pairs 59,125 3,926 8,777
: = { pear, basket, pick, put, tfree }, y =7? # Unique Concept-Triples | 50,713 3,766 9,920
i Reference: “a girl picks some pear from a % Unseen Concepts - 6.53% 8.97%
: + dmi¥ Samiin her Basier® % Unseen Concept-Pairs - 96.31% 100.00%
: ree and pur them In her basker. Test | % Unseen Concept-Triples - 99.60%  100.00%

‘> Unseen Concept in Training



-xperimental Results

Model \ Metrics | ROUGE-2/L  BLEU-3/4 METEOR | CIDEr SPICE | Coverage
bRNN-CopyNet (Gu etal., 2016) | 7.61 27.79 | 10.70 5.70 | 1580 | 479  15.00 51.15 "
Trans-CopyNet 878 28.08 | 1190 7.10 | 1550 | 4.61  14.60 49.06 s
MeanPooling-CopyNet 966 31.14 | 1070 6.10 | 16.40 506  17.20 55.70 mf)qd;:q

LevenTrans. (Gu et al., 2019) 10.58 32.23 | 19.70 11.60 | 20.10 7.54 19.00 63.81
ConstLeven. (Susanto et al., 2020) | 11.82 33.04 | 18.90 10.10 | 24.20 10.51 22.20 94.51

" GPT-2 (Radford et al., 2019) 17.18 39.28 | 30.70 21.10 | 26.20 12:15 25.90 79.09 (2)

BERT-Gen (Bao et al., 2020) 18.05 40.49 | 3040 21.10 | 27.30 12.49 27.30 86.06 Fine-tuning
UniLLM (Dong et al., 2019) 21.48 43.87 | 38.30 27.70 | 29.70 14.85 30.20 89.19 pre-trained
—  UniLM-v2 (Bao et al., 2020) 18.24 40.62 | 31.30 22.10 | 28.10 13.10  28.10 89.13 LMs

BART (Lewis et al., 2019) 22.23 4198 | 36.30 26.30 | 30.90 1392  30.60 97.35
T5-Base (Raffel et al., 2019) 14.57 34.55 | 26.00 16.40 | 23.00 9.16 22.00 76.67

| T5-Large (Raffel etal,, 2019) | 22.01 42.97 | 39.00 28.60 | 30.10 | 1496  31.60 95.29 3)
? Human Performance | 48.88 63.79 | 48.20 4490 | 3620 | 4353 6350 | 9931 Agreement
~__Manual Eval. C.Leven | GPT | BERT-G. | UniLM | BART | T5

Hit@1 3.2 21.5 22.3 21.0 263 | 26.8

Hit@3 18.2 63.0 59.5 69.0 69.0 | 70.3

Hit@5 51.4 95.5 95.3 96.8 96.3 | 97.8




Case Study & Transfer Learning

Concept-Set: { hand, sink, wash, soap }

......................................................................................

i[bRNN-CopyNef]: a hand works in the sink .
E[MeanPooling-CopyNef]: the hand of a sink being washed up
E[Consteven]: a hand strikes a sink to wash from his soap.
E[GPT-Z]: hands washing soap on the sink.

E[BERT—Gen]: a woman washes her hands with a sink of soaps.
%[UniLM]: hands washing soap in the sink
;[BART]: a man is washing his hands in a sink with soap and

%washing them with hand soap. b

;[TS]: hand washed with soap in a sink. ap |

1. A girl is washing her hands with soap in the bathroom sink.

2.1 will wash each hand thoroughly with soap while at the sink.

'3. The child washed his hands in the sink with soap.

4. A woman washes her hands with hand soap in a sink. )

5. The girl uses soap to wash her hands at the sink. e

0.8
0.78
0.76
0.74
0
S o072
S
S
% 0 : — w/CG (T5)
oss| ] 3% — w / CG(BART)
— w / CG(UniLM)
— = RoBERTa
0.64 — w / CG(BERT-Gen)
— w / CG(ConstLeven)
0.62
500 1,000 1500 2000 2500 3,000
Training Steps

Learning curve for the transferring study (acc on
dev). We use trained CommonGen models to generate
choice-specific context for the CommonsenseQA task.



Learning with Natural Language Explanations

Sentiment on ENT is
or negative?

X1. There was a long wait for a table
outside, but it was a little too hot in the
sun anyway so our ENT was very nice.

Relation between ENT1 and ENT27

X,: Officials in Mumbai said that the two

suspects, David Headley, and ENT1, who ——

was born in Pakistan but is a ENTZ citizen,
both visited Mumbai before the attacks.

(Wang et al., ICLR’20)  http://inklab.usc.edu/project-NExT

—

Users' natural language
explanations

. because the
words “very nice” is within
3 words after the ENT.

per: nationality, because the
words “is @ appear right
before ENTZ2 and the word
“citizen” is right after ENT2.
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Thank you!

« USC Intelligence and Knowledge Discovery (INK) Lab
e http://inklab.usc.edu/

» Code: https://github.com/INK-USC
e Xijangren@usc.edu
« @xiangrenNLP

: | | . ‘ ° y .‘"*,_.

Information Sciences Insfitute ]
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